Metal/graphene nanocomposites synthesized with the aid of supercritical fluid for promoting hydrogen release from complex hydrides.
نویسندگان
چکیده
With the aid of supercritical CO2, Fe-, Ni-, Pd-, and Au-nanoparticle-decorated nanostructured carbon materials (graphene, activated carbon, carbon black, and carbon nanotubes) are synthesized for catalyzing the dehydrogenation of LiAlH4. The effects of the metal nanoparticle size and distribution, and the type of carbon structure on the hydrogen release properties are investigated. The Fe/graphene nanocomposite, which consists of ∼2 nm Fe particles highly dispersed on graphene nanosheets, exhibits the highest catalytic performance. With this nanocomposite, the initial dehydrogenation temperature can be lowered (from ∼135 °C for pristine LiAlH4) to ∼40 °C without altering the reaction route (confirmed by in situ X-ray diffraction), and 4.5 wt% H2 can be released at 100 °C within 6 min, which is faster by more than 135-fold than the time required to release the same amount of H2 from pristine LiAlH4.
منابع مشابه
Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid
Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investig...
متن کاملThe Growth of Multilayer Graphene over MCM-41 by CVD Method in Atmospheric Pressure: metal–Free Nanocatalyst
Graphene films were fabricated over synthesized MCM-41 nanocatalyst by chemical vapordeposition method, and the reaction was carried in atmospheric pressure at 750˚C. Acetylenegas used as a carbon precursor and the synthesis reaction took place in hydrogen atmosphere.Mesoporous MCM-41 was synthesized at room temperature, using wet chemical method. Thesynthesized metal free catalyst was characte...
متن کاملMetal (Ni, Co)-Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 5799 wileyonlinelibrary.com issues associated with energy security and environmental pollution. [ 1–5 ] Oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are the most crucial electrochemical reactions to realize energy storage and conversion in these technologies. Although Pt-, Ir-, and Ru-ba...
متن کاملThe impact of carbon materials on the hydrogen storage properties of light metal hydrides
The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the kinetics of hydrogen release and uptake and the thermodynamic properties do not satisfy the requir...
متن کاملThe effect of alkaline earth metals (Magnesium and Calcium) on Hydrogen storage efficiency of alanate nanopowders
Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium ala...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 21 شماره
صفحات -
تاریخ انتشار 2014